GCC Code Coverage Report


Directory: ./
File: Solver/linearProblemARD.cpp
Date: 2024-04-14 07:32:34
Exec Total Coverage
Lines: 0 67 0.0%
Branches: 0 72 0.0%

Line Branch Exec Source
1 // ______ ______ _ _ _____ ______
2 // | ____| ____| | (_)/ ____| | ____|
3 // | |__ | |__ | | _| (___ ___| |__
4 // | __| | __| | | | |\___ \ / __| __|
5 // | | | |____| |____| |____) | (__| |____
6 // |_| |______|______|_|_____/ \___|______|
7 // Finite Elements for Life Sciences and Engineering
8 //
9 // License: LGL2.1 License
10 // FELiScE default license: LICENSE in root folder
11 //
12 // Main authors:
13 //
14
15 // System includes
16
17 // External includes
18
19 // Project includes
20 #include "Solver/linearProblemARD.hpp"
21 #include "FiniteElement/elementVector.hpp"
22 #include "FiniteElement/elementMatrix.hpp"
23
24 namespace felisce {
25 LinearProblemARD::LinearProblemARD():
26 LinearProblem("Advection-Reaction-Diffusion"),
27 m_density(0.),
28 m_rhsDynamicValue(nullptr),
29 m_advDynamicValue(nullptr),
30 m_difDynamicValue(nullptr),
31 m_reaDynamicValue(nullptr)
32 {}
33
34 LinearProblemARD::~LinearProblemARD() = default;
35
36
37 void LinearProblemARD::userElementCompute(const std::vector<Point*>& elemPoint, const std::vector<felInt>& elemIdPoint,felInt& iel,FlagMatrixRHS flagMatrixRHS) {
38 IGNORE_UNUSED_IEL;
39 IGNORE_UNUSED_ELEM_POINT;
40 IGNORE_UNUSED_ELEM_ID_POINT;
41 IGNORE_UNUSED_ARGUMENT(flagMatrixRHS);
42 if (m_rhsDynamicValue != nullptr) {
43 m_elemFieldRHS.setValue(*m_feTemp, *m_rhsDynamicValue, m_fstransient->time);
44 assert(!m_elementVector.empty());
45 m_elementVector[0]->source(1.,*m_feTemp,m_elemFieldRHS,0,1);
46 }
47
48 if (m_advDynamicValue != nullptr) {
49 m_elemFieldAdv.setValue(*m_feTemp, *m_advDynamicValue, m_fstransient->time);
50 m_elementMat[0]->u_grad_phi_j_phi_i(1.,m_elemFieldAdv,*m_feTemp,0,0,1);
51 }
52
53 if (m_difDynamicValue != nullptr) {
54 m_elemFieldDif.setValue(*m_feTemp, *m_difDynamicValue, m_fstransient->time);
55 m_elementMat[0]->a_grad_phi_i_grad_phi_j(1.,m_elemFieldDif,*m_feTemp,0,0,1);
56 }
57
58 if (m_reaDynamicValue != nullptr) {
59 m_elemFieldRea.setValue(*m_feTemp, *m_reaDynamicValue, m_fstransient->time);
60 m_elementMat[0]->a_phi_i_phi_j(1.,m_elemFieldRea,*m_feTemp,0,0,1);
61 }
62 }
63
64
65 void LinearProblemARD::initialize(std::vector<GeometricMeshRegion::Pointer>& mesh, FelisceTransient::Pointer fstransient, MPI_Comm& comm, bool doUseSNES) {
66 LinearProblem::initialize(mesh, comm, doUseSNES);
67 m_fstransient = fstransient;
68
69 std::vector<PhysicalVariable> listVariable(1);
70 std::vector<std::size_t> listNumComp(1);
71 listVariable[0] = temperature;
72 listNumComp[0] = 1;
73 //define unknown of the linear system.
74 m_listUnknown.push_back(temperature);
75 definePhysicalVariable(listVariable,listNumComp);
76 m_density = FelisceParam::instance().density;
77
78 m_rhsDynamicValue = FelisceParam::instance().elementFieldDynamicValue("ARDSourceTerm");
79 m_advDynamicValue = FelisceParam::instance().elementFieldDynamicValue("ARDAdvectionTerm");
80 m_difDynamicValue = FelisceParam::instance().elementFieldDynamicValue("ARDDiffusionTerm");
81 m_reaDynamicValue = FelisceParam::instance().elementFieldDynamicValue("ARDReactionTerm");
82 }
83
84
85 void LinearProblemARD::initPerElementType(ElementType eltType, FlagMatrixRHS flagMatrixRHS) {
86 IGNORE_UNUSED_ELT_TYPE;
87 IGNORE_UNUSED_FLAG_MATRIX_RHS;
88 m_iTemp = m_listVariable.getVariableIdList(temperature);
89 m_feTemp = m_listCurrentFiniteElement[m_iTemp];
90
91 m_elemFieldAdv.initialize(DOF_FIELD,*m_feTemp,this->dimension());
92 m_elemFieldDif.initialize(DOF_FIELD,*m_feTemp);
93 m_elemFieldRea.initialize(DOF_FIELD,*m_feTemp);
94 m_elemFieldRHS.initialize(DOF_FIELD,*m_feTemp);
95 m_elemField.initialize(DOF_FIELD,*m_feTemp);
96 }
97
98 void LinearProblemARD::computeElementArray(const std::vector<Point*>& elemPoint, const std::vector<felInt>& elemIdPoint, felInt& iel, FlagMatrixRHS flagMatrixRHS) {
99 IGNORE_UNUSED_ELEM_ID_POINT;
100 IGNORE_UNUSED_FLAG_MATRIX_RHS;
101 m_feTemp->updateFirstDeriv(0, elemPoint);
102 double coef = m_density/m_fstransient->timeStep;
103 int id=0;
104
105 //================================
106 // matrix
107 //================================
108 if (m_advDynamicValue == nullptr) {
109 m_elemFieldAdv.setValue(externalVec(id),*m_feTemp, iel, m_iTemp, m_externalAO[id], *m_externalDof[id]);
110 m_elementMat[0]->u_grad_phi_j_phi_i(1.,m_elemFieldAdv,*m_feTemp,0,0,1);
111 id++;
112 }
113
114 if (m_difDynamicValue == nullptr) {
115 m_elemFieldDif.setValue(externalVec(id),*m_feTemp, iel, m_iTemp, m_externalAO[id], *m_externalDof[id]);
116 m_elementMat[0]->a_grad_phi_i_grad_phi_j(1.,m_elemFieldDif,*m_feTemp,0,0,1);
117 id++;
118 }
119
120 if (m_reaDynamicValue == nullptr) {
121 m_elemFieldRea.setValue(externalVec(id),*m_feTemp, iel, m_iTemp, m_externalAO[id], *m_externalDof[id]);
122 m_elementMat[0]->a_phi_i_phi_j(1.,m_elemFieldRea,*m_feTemp,0,0,1);
123 id++;
124 }
125
126 m_elementMat[0]->phi_i_phi_j(coef,*m_feTemp,0,0,1);
127
128
129 //================================
130 // RHS
131 //================================
132 if (m_rhsDynamicValue == nullptr) {
133 m_elemFieldRHS.setValue(externalVec(id), *m_feTemp, iel, m_iTemp, m_externalAO[id], *m_externalDof[id]);
134 assert(!m_elementVector.empty());
135 m_elementVector[0]->source(1.,*m_feTemp,m_elemFieldRHS,0,1);
136 }
137
138 m_elemField.setValue(this->sequentialSolution(), *m_feTemp, iel, m_iTemp, m_ao, dof());
139 assert(!m_elementVector.empty());
140 m_elementVector[0]->source(coef,*m_feTemp,m_elemField,0,1);
141 }
142 }
143